ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Takeshi Yokoo, Akihiro Sasahara, Tadashi Inoue, Jungmin Kang, Atsuyuki Suzuki
Nuclear Technology | Volume 116 | Number 2 | November 1996 | Pages 173-179
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT96-A35298
Articles are hosted by Taylor and Francis Online.
Core performance analyses are conducted for fast reactors that accept and recycle the plutonium and minor actinides (MAs) recovered from light water reactor (LWR) spent fuel, together with the plutonium and MAs from the fast reactors’ own production. Metal, nitride, and oxide are the fuel materials used to compare the neutronic and safety parameters and to discuss acceptable minor actinide content. Based on the material balance of the analyzed cores, an LWR-fast reactor fuel cycle model is used to calculate the mass flow of the plutonium and MAs and to estimate their total amount in the waste stream.