ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Yuh-Ming Ferng, Shau-Shei Ma
Nuclear Technology | Volume 116 | Number 2 | November 1996 | Pages 160-172
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35297
Articles are hosted by Taylor and Francis Online.
Because several abnormal incidents involving the loss of the residual heat removal (RHR) system during refueling and maintenance outages have occurred in pressurized water reactors, the importance of investigating the physical phenomena with respect to these events has been recognized. RHR cooling is a major means to remove core decay heat after a reactor power plant shutdown. If the RHR system is lost and an alternate means for heat removal cannot be established in time, the core will boil off, and the primary system will be pressurized, which potentially results in uncovering of the fuel rods and failure of the temporary boundaries. The objective of this paper is to simulate the Maanshan nuclear power plant (MNPP) responses to the loss of the RHR system during midloop operation under variable outage conditions. Without gravity feed, the current investigation concentrates on the effects of different liquid levels, the existence of vents, and the number of active steam generators. Based on the simulated results, the total heat removal capability of one active steam generator and the pressurizer venting process is sufficient to remove core decay heat of 11.1 MW, which corresponds to the power level 3 days after plant shutdown, in the event that RHR cooling fails during midloop operation. The primary system will be stabilized, and the pressure throughout the transient will not exceed the design pressure of the nozzle dams or the temporary seals. The heat removal capability of the pressurizer vent plays a crucial role in system pressurization during loss of RHR and in the severity of this event, as shown by the calculated results of the open and closed MNPP, respectively. If only one or two active steam generators serve as an alternate cooling means, the increased pressure will exceed the design criteria of the temporary low-pressure boundaries. Then, for the closed conditions of MNPP, the loss-of-RHR event during midloop operation has the potential to induce another loss-of-coolant accident and to cause more serious consequences.