The quantity of iodine in spent-fuel solutions tends to decrease with an increase in the dissolution rate. This phenomenon is ascribed to the presence of nitrous acid (HNO2) generated in the dissolution process because of the following three findings: (a) in a hot nitric acid solution, the steady-state HNO2 concentration increases with an increase in the rate of its production and decreases with an increase in temperature, (b) the HNO2 decreases the quantity of colloidal iodine (the main component of residual iodine in a simulated spent-fuel solution) in proportion to its concentration up to ∼3.0 × 10−3 M, and (c) a higher dissolution rate of UO2 causes a higher HNO2 production rate, hence, a higher HNO2 concentration in the solution. The HNO2 did not appear (i.e., [HNO2] <2 × 10−4 M) in the dissolution of a UO2 pellet (∼1 g) with a low dissolution rate, 0.4 g/h of UO2 at 100°C. When high concentrations of I2 and NO2 (263 parts per million of I2 and 38% of NO2) in an N2flow were passed through a simulated spent-fuel solution at 100°C, the predicted colloid of AgI was produced as a chemical equilibrium product of the reaction AgI(s) + 2HNO3(aq) = I2(aq) + AgNO3(aq) + NO2(g) + H2O(l). This finding suggests that colloidal iodine may be produced secondarily in the dissolver of reprocessing plants; this can be one of the reasons why the residual iodine quantity in spentfuel solutions is higher in reprocessing plants than in laboratory-scale experiments.