ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Roberto Passalacqua, Didier Tarabelli, Claude Renault
Nuclear Technology | Volume 116 | Number 3 | December 1996 | Pages 283-292
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35284
Articles are hosted by Taylor and Francis Online.
Large-scale experiments show that whenever a loss of coolant accident occurs water pools are generated. Stratification of steam-saturated gas develops above growing water pools causing a different thermal hydraulics in the subcompartment where the water pool is located. Hereafter, the LWR Aerosols Containment Experiment (LACE) LA4 experiment, performed at the Hanford Engineering Development Laboratory, will be studied; this experiment exhibited a strong stratification, at all times, above a growing water pool. JERICHO and AEROSOLS-B2 are part of the Ensemble de Systèmes de Codes d’Analyse d’Accident des Réacteurs à Eau (ESCADRE) code system, a tool for evaluating the response of a nuclear plant to severe accidents. These two codes are used here to simulate respectively the thermal hydraulics and the associated aerosol behavior. Code results have shown that modeling large containment thermal hydraulics without taking into account the stratification phenomenon leads to large overpredictions of containment pressure and temperature. If the stratification, above the water pool, is modeled as a zone with a higher steam condensation rate and a higher thermal resistance (that is acting as a barrier to heat exchanges with the upper and larger compartment), ESCADRE predictions match experimental data quite well. The stratification region is believed to be able to affect aerosol behavior; aerosol settling is improved by steam condensation on particles and by diffusiophoresis and thermophoresis. In addition, the lower aerosol concentration throughout the stratification might cause a nonnegligible aerosol concentration gradient and consequently a driving force for the motion of smaller particles toward the pool.