ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jeffrey E. Woollard, Thomas E. Blue, Nilendu Gupta, Reinhard A. Gahbauer
Nuclear Technology | Volume 115 | Number 1 | July 1996 | Pages 100-113
Technical Paper | Radiation Protection | doi.org/10.13182/NT96-A35279
Articles are hosted by Taylor and Francis Online.
Design parameters for an epithermal neutron field for an accelerator-based source of neutrons for boron neutron capture therapy are developed. The parameters that are developed incorporate predicted biological effects in patients’ heads. They are based on an energy-spectrum-dependent neutron normal-tissue relative biological effectiveness and the treatment planning methodology of Gahbauer and his coworkers, which includes the effects of dose fractionation. The neutron field optimization parameters are evaluated for two epithermal neutron fields resulting from an accelerator-based neutron source with two different moderator assemblies. For the two moderator assemblies and moderator thicknesses evaluated, the D2O-Li2CO3 moderator assembly is superior to the BeO-MgO moderator assembly. The absorbed-dose delivered to the tumor for the D2O-Li2CO3 moderator assembly is larger than that for the BeO-MgO moderator assembly for almost all tumor depths. The treatment times for the D2O-Li2CO3 moderator assembly are slightly longer than for the BeO-MgO moderator assembly. However, for a 10-mA proton current, the treatment times for both are reasonable.