ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
Klaas Bakker, Rudy J. M. Konings
Nuclear Technology | Volume 115 | Number 1 | July 1996 | Pages 91-99
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT96-A35278
Articles are hosted by Taylor and Francis Online.
The thermal conductivity of UO2 is an important parameter in the design of nuclear fuel assemblies. The thermal conductivity can be reduced by radiation-induced porosity, leading to increased safety risks. In the literature, an analytical equation has been suggested to describe the influence of randomly ordered ellipsoidal porosity on thermal conductivity. However, in the case where the shape and the distribution of the pores is very complex, as in irradiated nuclear fuel, this equation is less well suited. The finite element method is introduced as a computational technique to take into account the influence of complex porosity structures on the thermal conductivity. Using the combination of image analysis and the finite element method, an equation has been obtained that describes the relation between the average elongated form of the pores and the overall thermal conductivity. Both the finite element method and image analysis are tools to estimate the thermal conductivity of high-burnup nuclear fuel.