ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Bassam I. Shamoun, Michael L. Corradini
Nuclear Technology | Volume 115 | Number 1 | July 1996 | Pages 35-45
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35273
Articles are hosted by Taylor and Francis Online.
Experimental observation has shown that the assumption of complete fuel fragmentation in a vapor explosion by the shock adiabatic thermodynamic model results in predicting upper bounds for the shock pressure, propagation velocity, and work output. This model has been modified by considering the condition where the assumption of complete fragmentation of the fuel is relaxed. A methodology is adopted using experimental values of the shock pressure and propagation velocity to estimate the initial mixture conditions of the experiment and the mass fraction of the materials participating in the explosion. Analysis of a steady-state subcritical vapor explosion in one dimension has been carried out by applying the conservation laws of mass, momentum, and energy and the appropriate equation of state for a homogeneous mixture of molten tin and water. The KROTOS-21 experiment, conducted at the Joint Research Center at Ispra, Italy, was used as the initial benchmark experiment in this analysis. A quasisteady explosion pressure of ∼3 MPa and a propagation velocity of ∼200 m/s were obtained in this experiment. Using this model, the estimated minimum mass of the fragmented fuel was found to be 0.21 kg (3.2%) of the total mass of the fuel. The predicted work output by this model corresponding to the aforementioned fragmented fuel mass was found to be 9.8 kJ. The estimated initial void fraction of the vapor was found to be 11.5%. In these analyses, a comparison is made of the various possible closure relations applied to the detonation wave theory for a vapor explosion and associated concerns of model stability in the two-phase region.