ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Alain Raymond, Brigitte Lagarde, Annick Pitiot
Nuclear Technology | Volume 115 | Number 2 | August 1996 | Pages 192-197
Technical Paper | Characterization of Radioactive Waste in France / Radioactive Waste Management | doi.org/10.13182/NT96-A35265
Articles are hosted by Taylor and Francis Online.
To comply with the regulations laid down by the French safety authorities for a national surface disposal site, one must obtain a good evaluation of the activity of the long-lived nuclides in each individual package. Because this cannot be done on a routine basis by direct nondestructive measurements, experiments are being conducted in France to calculate the activity of long-lived nuclides from the measured activity of “key” nuclides (60Co and 137Cs). This is achieved through the use of scaling factors and correlation functions that are calculated from the analysis of a limited number of representative waste samples. The first results obtained for some typical French pressurized water reactor radioactive wastes, including ion-exchange resins, evaporator concentrates, and filter cartridges, are presented. Significant correlations are observed for the 63Ni/60Co and 94Nb/60Co nuclide pairs, while I4C does not seem to correlate with 60Co. A good correlation between 137Cs and 90Sr is established for resins, while in the case of filters, only a tendency to correlation appears. This evaluation work is only at a preliminary stage, and much improvement of the results presented here is expected from research programs being carried out in this field by Electricité de France, Commissariat a l’Energie Atomique, and the French National Agency for Radioactive Waste Management in cooperation with the Commission of the European Communities.