ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Josée Perfettini
Nuclear Technology | Volume 115 | Number 2 | August 1996 | Pages 153-161
Technical Paper | Characterization of Radioactive Waste in France / Radioactive Waste Management | doi.org/10.13182/NT96-A35261
Articles are hosted by Taylor and Francis Online.
A neutronic method based on neutron thermalization by hydrogen nuclei is used to measure the moisture content in packages of radioactive waste embedded in hydraulic binders. The two steps of the measurement are (a) acquisition of the neutron characteristics of the embedded waste considered (or of a chemically similar material) and (b) the measurement itself obtained with a neutron moisture meter. The neutron characteristics required are the adsorption and diffusion cross sections ∑a and ∑d for thermal neutrons of the dried material. These two parameters are used to calculate the calibration curve (valid only for the material considered) as follows:N = (α·Ds + β)Hυ + γ·Ds + δ,which allows the counting N of the neutron moisture meter to be converted into free-water content Hv (α, β, γ, and δ are deduced from ∑a and ∑d; Ds is the dry density of the material). The neutron moisture meter (containing a fast neutron source and a thermalized neutron detector) is portable. Measurements are taken at various depths in a core hole made in the package to draw a water profile. The measurements are taken in materials used for waste solidification and in active or inactive packages. The results obtained (free-water content) are in good agreement with those obtained by determining the weight loss at 120°C (the differences between these two measurements are generally ∼10% when the free-water content is ∼20 to 25 %). The water profiles allow one to detect the presence of excessive free water.