ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Man-Sung Yim, Scott A. Simonson, Terry M. Sullivan
Nuclear Technology | Volume 114 | Number 2 | May 1996 | Pages 254-271
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT96-A35254
Articles are hosted by Taylor and Francis Online.
Atmospheric releases of I4C from a generic engineered low-level waste (LLW) disposal facility and its radiological impacts are investigated. A computer model that describes microbial gas generation and the transport has been developed and used to analyze the generation of l4C contaminated gases and subsequent migration in a facility. Models are based on a chemical kinetic description of aerobic and anaerobic decomposition of organic materials coupled with attending models of oxygen transport and consumption within waste containers in a facility. Effects of radiolysis on gas generation are addressed based on the estimated dose rate for class B and C wastes. Estimates predict that annual atmospheric release of l4C due to atmospheric pressure variations could range between ∼2.6 × 108 and 5.5 × 1011 Bq as a result of microbial gas generation based on a volume of 48 000 m3 LLW disposed in a facility. The associated dose to a maximally exposed individual is estimated to be dominated by ingestion pathway and strongly depends on the fraction of the food imported from an uncontaminated outside area. Dose rates are expected to be <0.04 mSv/yr, considering a reasonable distance between the facility and the exposed population. The depletion through airborne releases of l4C inventory that is available for transport through other pathways is not expected to be a significant issue.