ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Arafah E. Ghoneimy, Richard S. Dougall
Nuclear Technology | Volume 114 | Number 3 | June 1996 | Pages 399-403
Technical Note | Heat Transfer and Fluid Flow | doi.org/10.13182/NT96-A35242
Articles are hosted by Taylor and Francis Online.
Transient experiments were performed using two natural convection loops in series. The fluid in both loops was water at a pressure of 1 to 10 atm. Measurements were made of the temperature at key points in both loops over the duration of the tests, which were 4 to 6 h long. By using the assumption that after several hours the loops were operating in a quasi-steady-state condition, estimates could be made concerning the fluid circulation rates and heat transfer rates in various parts of the system. The flow rates were very low and in the laminar flow range. There was essentially no time lag before the start of flow in the second loop. The heat exchanger coupling the two loops was of a design whose performance could not be easily predicted. The measurement of key loop temperature as a function of time provides a simple means of obtaining preliminary predictions in planning extensive experimental test programs for complicated thermal systems.