ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
John C. Wagner, Alireza Haghighat, Bojan G. Petrovic
Nuclear Technology | Volume 114 | Number 3 | June 1996 | Pages 373-398
Technical Paper | Radiation Protection | doi.org/10.13182/NT96-A35241
Articles are hosted by Taylor and Francis Online.
The application of Monte Carlo methods for reactor pressure vessel (RPV) neutron fluence calculations is examined. As many commercial nuclear light water reactors approach the end of their design lifetime, it is of great consequence that reactor operators and regulators be able to characterize the structural integrity of the RPV accurately for financial reasons, as well as safety reasons, due to the possibility of plant life extensions. The Monte Carlo method, which offers explicit three-dimensional geometric representation and continuous energy and angular simulation, is well suited for this task. A model of the Three Mile Island unit 1 reactor is presented for determination of RPV fluence; Monte Carlo (MCNP) and deterministic (DORT) results are compared for this application; and numerous issues related to performing these calculations are examined. Synthesized three-dimensional deterministic models are observed to produce results that are comparable to those of Monte Carlo methods, provided the two methods utilize the same cross-section libraries. Continuous energy Monte Carlo methods are shown to predict more (15 to 20%) high-energy neutrons in the RPV than deterministic methods.