ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Matjaž Ravnik, Bogdan Glumac
Nuclear Technology | Volume 114 | Number 3 | June 1996 | Pages 365-372
Technical Paper | Nuclear Criticality Safety | doi.org/10.13182/NT96-A35240
Articles are hosted by Taylor and Francis Online.
A criticality safety analysis of a pool-type storage for spent TRIGA Mark II reactor fuel is presented. Two independent computer codes are applied: the MCNP Monte Carlo code and the WIMS lattice cell code. Two types of fuel elements are considered: standard fuel elements with 12 wt% uranium concentration and FLIP fuel elements. A parametric study of spent-fuel storage lattice pitch, fuel element burnup, and water density is presented. Normal conditions and postulated accident conditions are analyzed. A strong dependence of the multiplication factor on the distance between the fuel elements and on the effective water density is observed. A multiplication factor <1 may be expected for an infinite array of fuel rods at center-to-center distances >6.5 cm, regardless of the fuel element type and burnup. At shorter distances, the subcriticality can be ensured only by adding absorbers to the array of fuel rods even if the fuel rods were burned to ∼20% burnup. The results of both codes agree well for normal conditions. The results show that WIMS may be used as a complement to the Monte Carlo code in some parts of the criticality analysis.