ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Matjaž Ravnik, Bogdan Glumac
Nuclear Technology | Volume 114 | Number 3 | June 1996 | Pages 365-372
Technical Paper | Nuclear Criticality Safety | doi.org/10.13182/NT96-A35240
Articles are hosted by Taylor and Francis Online.
A criticality safety analysis of a pool-type storage for spent TRIGA Mark II reactor fuel is presented. Two independent computer codes are applied: the MCNP Monte Carlo code and the WIMS lattice cell code. Two types of fuel elements are considered: standard fuel elements with 12 wt% uranium concentration and FLIP fuel elements. A parametric study of spent-fuel storage lattice pitch, fuel element burnup, and water density is presented. Normal conditions and postulated accident conditions are analyzed. A strong dependence of the multiplication factor on the distance between the fuel elements and on the effective water density is observed. A multiplication factor <1 may be expected for an infinite array of fuel rods at center-to-center distances >6.5 cm, regardless of the fuel element type and burnup. At shorter distances, the subcriticality can be ensured only by adding absorbers to the array of fuel rods even if the fuel rods were burned to ∼20% burnup. The results of both codes agree well for normal conditions. The results show that WIMS may be used as a complement to the Monte Carlo code in some parts of the criticality analysis.