ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Matjaž Ravnik, Bogdan Glumac
Nuclear Technology | Volume 114 | Number 3 | June 1996 | Pages 365-372
Technical Paper | Nuclear Criticality Safety | doi.org/10.13182/NT96-A35240
Articles are hosted by Taylor and Francis Online.
A criticality safety analysis of a pool-type storage for spent TRIGA Mark II reactor fuel is presented. Two independent computer codes are applied: the MCNP Monte Carlo code and the WIMS lattice cell code. Two types of fuel elements are considered: standard fuel elements with 12 wt% uranium concentration and FLIP fuel elements. A parametric study of spent-fuel storage lattice pitch, fuel element burnup, and water density is presented. Normal conditions and postulated accident conditions are analyzed. A strong dependence of the multiplication factor on the distance between the fuel elements and on the effective water density is observed. A multiplication factor <1 may be expected for an infinite array of fuel rods at center-to-center distances >6.5 cm, regardless of the fuel element type and burnup. At shorter distances, the subcriticality can be ensured only by adding absorbers to the array of fuel rods even if the fuel rods were burned to ∼20% burnup. The results of both codes agree well for normal conditions. The results show that WIMS may be used as a complement to the Monte Carlo code in some parts of the criticality analysis.