ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Industry Update—October 2025
Here is a recap of recent industry happenings:
New international partnership to speed Xe-100 SMR deployment
X-energy, Amazon, Korea Hydro & Nuclear Power, and Doosan Enerbility have formed a strategic partnership to accelerate the deployment of X-energy’s Xe-100 small modular reactors and TRISO fuel in the United States to meet the power demands from data centers and AI. The partners will collaborate in reactor engineering design, supply-chain development, construction planning, investment strategies, long-term operations, and global opportunities for joint AI-nuclear deployment. The companies also plan to jointly mobilize as much as $50 billion in public and private investment to support advanced nuclear energy in the U.S.
Constantine P. Tzanos
Nuclear Technology | Volume 147 | Number 2 | August 2004 | Pages 181-190
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT04-A3524
Articles are hosted by Taylor and Francis Online.
Benchmark experiments simulating flows in a pressurized water reactor rod bundle were analyzed to evaluate the performance of a state-of-the-art computational fluid dynamics (CFD) code. For the simulation of turbulence a number of standard k-[curly epsilon] models were used. Away from components that cause significant flow deflections, the difference between mean velocity predictions and measurements is within the experimental error. Near such components there is significant discrepancy between velocity predictions and measurements. Even in rod bundles without flow deflectors, the turbulence predictions of standard k-[curly epsilon] models show significant discrepancy with measurements. These discrepancies are greater near components that cause flow deflections. Turbulence generated by vanes on spacer grids significantly enhances thermal mixing. To improve the fidelity of CFD simulations of flows in reactor rod bundles, the development of Reynolds averaging of the Navier-Stokes equations turbulence models based on such flows is needed.