ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Mohamed S. El-Genk, Cheng Gao
Nuclear Technology | Volume 114 | Number 3 | June 1996 | Pages 351-364
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT96-A35239
Articles are hosted by Taylor and Francis Online.
Quenching experiments were performed to investigate the effects of radius of curvature and edge angle on pool boiling from downward-facing surfaces in saturated water. The experiments employed two, 20-mm-thick copper test sections that had the same diameter (75 mm) but different surface radii (148 and 218.5 mm) and vapor release (or edge) angles (14.68 and 9.88 deg). The effect of surface area on pool boiling was determined by comparing the present results with the results for a copper section that was of the same thickness but had a surface radius of 148 mm and was less than one-half the surface area. The maximum heat flux (qMHF) was highest at the lowermost position and decreased with increased local inclination on the surface. Both local and surface average qMHF were representative of quasi-steady-state critical heat flux. The high edge angle reduced vapor accumulation, which enhanced surface coolability and shortened its quenching time. For an edge angle of 9.88 deg, increasing the surface area (or surface radius) insignificantly affected the local qMHF near the edge of the copper section but lowered it everywhere else by ∼10%. For the same surface area, the larger edge angle (or smaller surface radius) increased qMHF by as much as 40%.