ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Dirk J. Oh, Hong S. Lim, Myeong Y. Ohn, Kang M. Lee, Ho C. Suk
Nuclear Technology | Volume 114 | Number 3 | June 1996 | Pages 292-307
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35234
Articles are hosted by Taylor and Francis Online.
The CATHENA “slave” channel model is used for fuel channel analysis of a 30% reactor inlet header break in a Canada deuterium uranium (CANDU)-6 reactor loaded with 43-element bundles of advanced CANDU [CANDU flexible fueling (CANFLEX)] fuel. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The maximum fuel centerline and sheath temperatures for the CANFLEX bundle are lower by 388 and 128°C, respectively, than those for the standard bundle because of the lower maximum linear power of the CANFLEX bundle. The pressure tube (PT)/calandria tube (CT) contact for the CANFLEX bundle occurs 2 s later than that for the standard bundle. The PT/CT contact temperature for the CANFLEX bundle is 7°C lower than that for the standard bundle. These provide the CANFLEX bundle with a slightly enhanced safety margin for fuel channel integrity in the CANDU-6 reactor, compared with the standard bundle. The effect of bearing pad (BP)/PT contact on the PT temperature predictions is assessed. A BP/PT contact conductance of 3 kW/m2·K prior to the onset of PT ballooning creates ∼ 100° C of a local hot spot at the contacted PT sector. A BP/PT contact conductance of 0.5 kW/m2·K after PT ballooning does not create any hot spot because it gives the contacted PT sector approximately the same heat transfer as convective heating by the hot coolant for the adjacent sector. The assumed BP/PT contact conductance does not threaten the fuel channel integrity.