ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Tatjana Jevremovic, Yoshiaki Oka, Sei-Ichi Koshizuka
Nuclear Technology | Volume 114 | Number 3 | June 1996 | Pages 273-284
Technical Paper | Fission Reactor | doi.org/10.13182/NT96-A35232
Articles are hosted by Taylor and Francis Online.
The core design of a fast converter reactor adopting enriched UO2 fuel is studied for maximizing the power rating of the direct-cycle, supercritical water-cooled fast reactor with the same reactor pressure vessel as the breeder and mixed-oxide (MOX) fueled converter. The coolant void reactivity is kept negative by placing thin zirconium-hydride layers in the blanket fuel assemblies facing the driver fuels, as in our fast breeder reactor design. Compared with the fast converter adopting MOX fuel, the electric power output is increased 11%, from 1444 to 1625 MW(electric). It is attained by the reduced blanket fuel fraction for keeping negative reactivity at coolant voiding. The positive reactivity at flooding the core is much larger than that of the MOX core, but it can be managed by the control rod system. The conversion ratio, the surviving ratio, is 0.85, reduced 0.1 from that of the MOX converter. The enrichment of UO2fuel reaches 16.9%. The specific fissile inventory is the highest, compared with the MOX-fueled converter and breeder due to the lower fission cross sections of 235U. The cores of the supercritical water-cooled reactors are radially heterogeneous. The decoupling problem is, however, much smaller than that of the liquid-metal fast breeder reactor due to the smaller core diameter. The hydrogen loss from the zirconium hydrides at steady state and accidental conditions does not impose a problem.