ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Byung-Soo Lee, William A. Jester
Nuclear Technology | Volume 114 | Number 1 | April 1996 | Pages 122-134
Technical Paper | Material | doi.org/10.13182/NT96-A35228
Articles are hosted by Taylor and Francis Online.
Mechanisms of radioiodine deposition from sample air containing both gaseous and particulate radioiodine in reactor sample lines are studied, and experimental methods are developed. A short half-lived radioiodine tracer, 128I (t1/2 = 25 min), is used in the chemical forms of molecular iodine and methyl iodide. An effort is made to investigate the type of particles for particulate iodine. Of the various types of particles tested, only tobacco smoke particles have a sufficiently high iodination rate to be used in these studies. The 609.6-cm (20-ft)-long sample lines of Types 316 and 304 stainless steel tube (2.29 cm i.d.) were tested for the sample flow rates of 28.3 ℓ/min (1 ft3/min) and 56.6 ℓ/min (2 ft3/min). In-tube measurements using a calibrated thin-walled Geiger tube are conducted to determine the penetration factor and space-dependent deposition velocity profile of radioiodine. Methyl iodide is not reactive for either the tube surfaces or aerosol particles. The overall deposition velocity of the mixture of the smoke particles and molecular iodine is higher than that of molecular iodine alone for similar sampling conditions. It is concluded that the high deposition rate of radioiodine in the sample air mixed with smoke particles and molecular iodine is caused by the different sample line surfaces that are contaminated with smoke particles.