ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Nikolai B. Mikheev, Sergei A. Kulyukhin, Alla N. Kamenskaya, Igor’ A. Rumer
Nuclear Technology | Volume 114 | Number 1 | April 1996 | Pages 77-83
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35224
Articles are hosted by Taylor and Francis Online.
Increasing the safety of nuclear power plants is a problem of the utmost importance in the nuclear energy industry. Particular attention is given to severe accidents at nuclear reactors. Although the probability of these accidents is low (<10−5), their consequences are the most disastrous. Severe accidents result in the release of tens of thousands of curies of radioactive products into the area under the containment. Modern protective systems for the localization of radioactive aerosols and volatile radionuclides are based mainly on the filtration of gas flow, using various solid and liquid sorbents. The main principle of these filters is based on the precipitation of suspended particles on any surface (grids, liquid drops, or film, fiber, and electrode surfaces). In these processes, physical phenomena such as gravitation, inertia, diffusion, electricity, magnetism, and supersonics are used. A disadvantage of the available systems is that they may not trap radioaerosols present in the vapor-gas mixture in the form of finely dispersed (much smaller than 0.1 µm) hydrophobic particles. A new concept of protection from radioaerosols and volatile radionuclides has been suggested. A basically new method of the localization of radioactive aerosols and volatile radionuclides is based on the physicochemical process occurring in the gas phase. The proposed concept of protection from radioaerosols and volatile fission products uses unconventional approaches based not on the filtration of vapor-gas flow but on the extraction of radioaerosols and radioiodine from them by the formation of mixed micelles with manufactured hydrophilic aerosols, such as MoO3 and NH4CI-(NH4)2SO3, and the cocrystallization of ionic iodine with them. The new concept may be used for protection from radioaerosols at various types of nuclear reactors.