ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Nikolai B. Mikheev, Sergei A. Kulyukhin, Alla N. Kamenskaya, Igor’ A. Rumer
Nuclear Technology | Volume 114 | Number 1 | April 1996 | Pages 77-83
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35224
Articles are hosted by Taylor and Francis Online.
Increasing the safety of nuclear power plants is a problem of the utmost importance in the nuclear energy industry. Particular attention is given to severe accidents at nuclear reactors. Although the probability of these accidents is low (<10−5), their consequences are the most disastrous. Severe accidents result in the release of tens of thousands of curies of radioactive products into the area under the containment. Modern protective systems for the localization of radioactive aerosols and volatile radionuclides are based mainly on the filtration of gas flow, using various solid and liquid sorbents. The main principle of these filters is based on the precipitation of suspended particles on any surface (grids, liquid drops, or film, fiber, and electrode surfaces). In these processes, physical phenomena such as gravitation, inertia, diffusion, electricity, magnetism, and supersonics are used. A disadvantage of the available systems is that they may not trap radioaerosols present in the vapor-gas mixture in the form of finely dispersed (much smaller than 0.1 µm) hydrophobic particles. A new concept of protection from radioaerosols and volatile radionuclides has been suggested. A basically new method of the localization of radioactive aerosols and volatile radionuclides is based on the physicochemical process occurring in the gas phase. The proposed concept of protection from radioaerosols and volatile fission products uses unconventional approaches based not on the filtration of vapor-gas flow but on the extraction of radioaerosols and radioiodine from them by the formation of mixed micelles with manufactured hydrophilic aerosols, such as MoO3 and NH4CI-(NH4)2SO3, and the cocrystallization of ionic iodine with them. The new concept may be used for protection from radioaerosols at various types of nuclear reactors.