ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Matthias Heitsch
Nuclear Technology | Volume 114 | Number 1 | April 1996 | Pages 68-76
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35223
Articles are hosted by Taylor and Francis Online.
Hydrogen release and combustion during severe accident scenarios can impose considerable loads on the containment structure and internal components. Either random sources (electric equipment) or spark igniters installed in the numerous containment rooms may initiate more or less accelerated deflagrations. To avoid damaging consequences, different concepts are available, which range from diluting or making the containment atmosphere inert to the use of igniters and catalytic recombiners. Spark igniters are used to burn the atmospheric hydrogen deliberately as early as possible, which means whenever it becomes flammable. A hydrogen deflagration model has been developed that is meant to estimate the combustion phenomena on a mechanistic basis as part of an integrated containment code to calculate severe accident sequences in the containment. It provides temperature and pressure loads resulting from deflagrations. The deflagration model is verified by applying it to specially designed deflagration experiments that can describe the type of premixed combustion to be found in nuclear power plant containments. The results demonstrate the potential of the model to describe the dynamics of a deflagration quite well. Due to deficiencies in understanding the nature of flame front growth, appropriate burning area stretching functions are derived from available experiments.