ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Mark W. Wendel, David G. Morris, Paul T. Williams
Nuclear Technology | Volume 114 | Number 1 | April 1996 | Pages 51-67
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35222
Articles are hosted by Taylor and Francis Online.
Loss-of-coolant accident analyses have been completed for the High-Flux Isotope Reactor safety analysis report. More than 100 simulations have been performed using the RELAP5/MOD2.5 computer program. The RELAP5 input model used for the simulations is quite detailed, including 17 parallel channels in the core region, the three active heat exchanger cells, the pressurizing system, and the secondary cooling system. Special models are developed to represent the effects of shrinkage in the primary coolant pressure boundary and cavitation of the primary coolant pumps. Six locations in the primary coolant system are selected as pipe break sites to determine the worst-case scenario. At each of the locations, simulations are completed for a range of break diameters. The reactor is assumed to survive the transient as long as the hot-spot heat flux remains below the flow excursion limit. In addition to the baseline simulations, extensive parametric simulations are conducted to ensure that the modeling assumptions used are conservative. For a break diameter of 5.1 cm at any of the six locations in the system, the hot-spot heat flux remains beneath this limit, and furthermore, no boiling occurs in the fuel region. A summary table for all results is presented, and results are discussed in detail for the worst-case 5.1-cm break scenario.