ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Bernard André, Gérard Ducros, Jean Pierre Lévêque, Morris F. Osborne, Richard A. Lorenz, Denis Maro
Nuclear Technology | Volume 114 | Number 1 | April 1996 | Pages 23-50
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35221
Articles are hosted by Taylor and Francis Online.
During the 1970s, reactor safety authorities developed increasing interest in methods for accurately predicting the extent of hazards associated with severe accidents in light water reactors (LWRs). In response to these concerns, out-of-pile experimental projects were initiated by the U.S. Nuclear Regulatory Commission and the French Nuclear Protection and Safety Institute, at Oak Ridge National Laboratory (ORNL) and the Commissariat à l’Energie Atomique (CEA), respectively. Both experimental efforts were designed for source term characterization of the fission products (FPs) released from LWR fuel samples under test conditions representative of severe accidents, i.e., in oxidizing or reducing atmospheres at temperatures up to 2700 K (at ORNL) and 2570 K (at CEA). The experimental devices, procedures, and parameters are described. The combined database of available results is summarized and related to experimental conditions. Using Booth diffusion theory, diffusion coefficients of the FPs were calculated, and their evolution with temperatures in the 1070 to 2700 K range were plotted. The results show the good agreement between the independently determined ORNL and CEA FP diffusion coefficient values. By plotting the data in Arrhenius fashion, it has been possible to do the following: