ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Bernard André, Gérard Ducros, Jean Pierre Lévêque, Morris F. Osborne, Richard A. Lorenz, Denis Maro
Nuclear Technology | Volume 114 | Number 1 | April 1996 | Pages 23-50
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35221
Articles are hosted by Taylor and Francis Online.
During the 1970s, reactor safety authorities developed increasing interest in methods for accurately predicting the extent of hazards associated with severe accidents in light water reactors (LWRs). In response to these concerns, out-of-pile experimental projects were initiated by the U.S. Nuclear Regulatory Commission and the French Nuclear Protection and Safety Institute, at Oak Ridge National Laboratory (ORNL) and the Commissariat à l’Energie Atomique (CEA), respectively. Both experimental efforts were designed for source term characterization of the fission products (FPs) released from LWR fuel samples under test conditions representative of severe accidents, i.e., in oxidizing or reducing atmospheres at temperatures up to 2700 K (at ORNL) and 2570 K (at CEA). The experimental devices, procedures, and parameters are described. The combined database of available results is summarized and related to experimental conditions. Using Booth diffusion theory, diffusion coefficients of the FPs were calculated, and their evolution with temperatures in the 1070 to 2700 K range were plotted. The results show the good agreement between the independently determined ORNL and CEA FP diffusion coefficient values. By plotting the data in Arrhenius fashion, it has been possible to do the following: