ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Ken Nakajima, Masanori Akai
Nuclear Technology | Volume 113 | Number 3 | March 1996 | Pages 375-379
Technical Note | Fission Reactor | doi.org/10.13182/NT96-A35217
Articles are hosted by Taylor and Francis Online.
To investigate the accuracy of the neutronic calculations in various neutron spectra, the modified conversion ratios [(MCR): ratio of 238U capture rate-to-total fission rate] of four kinds of light water-moderated UO2 fuel lattices were measured. In the measurements, the relative reaction rates of 238U capture and total fission were obtained from the nondestructive gamma-ray spectrometry of 239Np and 143 Ce, respectively, which accumulated in the fuel rod irradiated at the Tank-Type Critical Assembly. The moderator-to-fuel volume ratios Vm/Vf of the measured lattices were 1.50 (undermoderate) to 3.00 (overmoderate). The measured MCRs were 0.477 ± 0.014(Vm/Vf = 1.50), 0.434 ± 0.013(1.83), 0.383 ± 0.011(2.48), and 0.356 ± 0.011(3.00), respectively. The Monte Carlo calculation employing the JENDL-3 library showed good agreement with the experiments for all the cores, although they showed a tendency of overestimation for larger values of MCR, as shown in the case of UO2 tight lattices. Therefore, it was concluded that, for the cores investigated, the accuracy of the neutronic calculation method currently used was very good.