ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Chang H. Oh, John C. Chapman
Nuclear Technology | Volume 113 | Number 3 | March 1996 | Pages 327-337
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT96-A35212
Articles are hosted by Taylor and Francis Online.
Flow experiment and analysis were performed to determine flow instability condition in a single thin vertical rectangular flow channel (1.98 mm in channel gap, 50.8mm in width, and 121.92 or 60.96 cm in heated height), which represents one of the Advanced Test Reactor’s inner coolant channels between fuel plates. The maximum surface heat flux and flow rate are 159.8kW/m2 and 462.5 kg/s-m2, respectively, which simulates decay heat removal from the single heated surface of the Advanced Test Reactor. The tests are conducted at atmospheric and subatmospheric pressure, simulating expected conditions during a hypothetical loss-of-coolant accident. The precursor of the flow instability [the point of net void generation and the onset of flow instability (OFI) defined by Saha and Zuber] was compared, and the OFI map (power density versus minimum mass flux at OFI) was developed in this study.