ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Chang H. Oh, John C. Chapman
Nuclear Technology | Volume 113 | Number 3 | March 1996 | Pages 327-337
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT96-A35212
Articles are hosted by Taylor and Francis Online.
Flow experiment and analysis were performed to determine flow instability condition in a single thin vertical rectangular flow channel (1.98 mm in channel gap, 50.8mm in width, and 121.92 or 60.96 cm in heated height), which represents one of the Advanced Test Reactor’s inner coolant channels between fuel plates. The maximum surface heat flux and flow rate are 159.8kW/m2 and 462.5 kg/s-m2, respectively, which simulates decay heat removal from the single heated surface of the Advanced Test Reactor. The tests are conducted at atmospheric and subatmospheric pressure, simulating expected conditions during a hypothetical loss-of-coolant accident. The precursor of the flow instability [the point of net void generation and the onset of flow instability (OFI) defined by Saha and Zuber] was compared, and the OFI map (power density versus minimum mass flux at OFI) was developed in this study.