ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Y. Hou, E. K. Barefield, D. W. Tedder, S. I. Abdel-Khalik
Nuclear Technology | Volume 113 | Number 3 | March 1996 | Pages 304-315
Technical Paper | Enrichment and Reprocessing System | doi.org/10.13182/NT96-A35210
Articles are hosted by Taylor and Francis Online.
Extended contact between heated mixtures of trin-butyl phosphate (TBP) and aqueous solutions of nitric acid and/or heavy metal nitrate salts at elevated temperatures can lead to exothermic reactions of explosive violence. Most solvent extraction operations (e.g., Purex) are conducted at ambient conditions without heating TBP and have been performed safely for decades, but several explosions involving TBP have occurred in the United States, Canada, and the former Soviet Union. This investigation was undertaken to characterize the products of thermal decomposition of both single- and two-phase mixtures of TBP, nitric acid, and water under a variety of conditions. The data indicate that the extent of reaction and the rate of gaseous product formation are affected by the presence of Zr4+, distillation compared with reflux conditions, temperature, water/HNO3 and HNO3/TBP ratios, and whether the decomposition occurs under constant pressure or constant volume conditions. Higher reaction temperatures accelerate the rate of decomposition, but the extent of decomposition, as measured by the quantity of gaseous products, was greater at lower temperatures when the decomposition was performed under distillation conditions. Higher gas production occurs under reflux conditions, lower H2O/HNO3 ratios, and when a separate water-HNO3 phase is initially present. The major gaseous products include N2, CO, CO2, NO, and N2O. Measurable amounts of NO2 were not present in the final product mixture, although an orange color suggesting the presence of NO2 was observed in the early stages of decomposition. The major liquid products were dibutyl phosphoric acid, butyl nitrate, and water. Small amounts of C1-C4 carboxylic acids were also present. Because of the small sample sizes that were employed and the isothermal conditions of the decomposition, runaway reactions were not observed. Some possible reaction pathways are considered.