ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. D. Kennedy, J. Woodcock, R. F. Wright, J. A. Gresham
Nuclear Technology | Volume 113 | Number 1 | January 1996 | Pages 14-20
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35195
Articles are hosted by Taylor and Francis Online.
The Heavy Water Reactor Facility is equipped with a passive cooling system to provide long-term decay heat removal during postulated beyond-design-basis accidents. The passive containment cooling system (PCCS) consists of an annular space between the steel containment vessel and the concrete shield building and optimized inlet and chimney designs. The design, analysis, and regulatory acceptance of a plant with PCCS requires an understanding of the external convective and radiative heat transfer phenomena, as well as the internal distributions of noncondensable gases. The internal distribution of noncondensable gases has a strong effect on the resistance to condensation heat transfer and therefore affects the wall temperature distribution applied to the external channel. To evaluate these phenomena, a test facility having a scale of approximately one to ten, known as the large-scale test, was constructed, and several series of tests were performed. Test results have been used to validate the Westinghouse-GOTHIC (WGOTHIC) computer code. A comparison of WGOTHIC predictions and test results has been completed. This paper shows that mixed-convection models applied to the interior and exterior surfaces as well as a heat and mass transfer analogy for internal condensation provides good comparison to test results. An axial distribution of noncondensables within the test vessel is also predicted.