ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
J. Bourges, C. Madic, G. Koehly, T. H. Nguyen, D. Baltes, C. Landesman, A. Simon
Nuclear Technology | Volume 113 | Number 2 | February 1996 | Pages 204-220
Technical Paper | Radioisotopes and Isotope | doi.org/10.13182/NT96-A35189
Articles are hosted by Taylor and Francis Online.
In 1985, the Commissariat à I’Energie Atomique (CEA), France, decided to set up an industrial unit at the Saclay Nuclear Research Center to produce fission 99Mo and to supply this isotope to the ORIS Company, France, for medical applications. The CEA’s role in this project was to develop a brand-new process for 99Mo production and to assume responsibility for the design and construction of the industrial plant. Production was based on 74 TBq (2 kCi) of 99Mo per week, under particularly severe constraints to protect the environment and the workers. The production unit, run in a semiautomatic mode, was built at Saclay in 1987 and cold tested from 1987 to 1989. The unit was never upgraded to active experiments because of the sudden drop in the price of 99Mo on the world market, which made the French project uneconomic. The focus here is mainly on the research conducted at the time to define and to validate the entire fission molybdenum chemical process. The process flowchart incorporates two original features. First, in the head-end of the process, the irradiated targets are dissolved in a sulfuric acid medium, entailing the maintenance of radioiodine and radiotellurium, for safety reasons, in the form of I‾(AgI) and Te(0), respectively, allowing their easy removal as solids from the dissolution liquors and their subsequent storage for radioactive decay. Second, in the core of the process, the molybdenum is purified by extraction with tri-n-butylacetohydroxamic acid, an extractant with exceptional affinity and selectivity for Mo(VI). The 99Mo(VI) extraction cycles employ the extraction chromatographic mode.