ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Almir Fernandes, Sudarshan K. Loyalka
Nuclear Technology | Volume 113 | Number 2 | February 1996 | Pages 155-166
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35185
Articles are hosted by Taylor and Francis Online.
The CONTAIN code is an integrated code for predicting the containment behavior (chemical, physical, and radiological) in a severe accident. It models the thermal hydraulics as well as the aerosol and fission products behavior inside the containment. There are four aerosol deposition mechanisms modeled in the code: settling, diffusion to surfaces, thermophoresis, and diffusiophoresis. In general, the settling and diffusion are the most important. A comparison of the CONTAIN deposition rate expression with a general and more accurate rate expression, however, shows that for most geometries, the code expression overestimates the deposition of small particles, mainly because of an inadequate assumption regarding the dependence of the thickness of the boundary layer on particle size. For some specific geometries, the expression can also overestimate deposition of large particles. The general and more accurate expression is implemented in the CONTAIN code for the cubic and spherical geometries for a test problem. The original and the modified versions of the CONTAIN code are found to yield different results for the suspended aerosol mass. The differences depend on other aerosol processes such as coagulation and also on geometry.