ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Soon Heung Chang, Ki Sig Kang, Seong Soo Choi, Han Gon Kim, Hee Kyo Jeong, Chul Un Yi
Nuclear Technology | Volume 112 | Number 2 | November 1995 | Pages 266-294
Technical Paper | Reactor Control | doi.org/10.13182/NT95-A35179
Articles are hosted by Taylor and Francis Online.
The On-line Operator Aid SYStem (OASYS) has been developed to support the operator’s decision making process and to ensure the safety of a nuclear power plant by providing operators with proper guidelines in a timely manner, according to the plant operation mode. The OASYS consists of four systems such as a signal validation and management system (SVMS), a plant monitoring system (PMS), an alarm filtering and diagnostic system (AFDS), and a dynamic emergency procedure tracking system (DEPTS). The SVMS and the PMS help operators to maintain a plant in a condition to withstand the adverse events during a normal operation condition. The AFDS covers the abnormal events until it exceeds the limit range of reactor trip signals, while after a reactor trip, the DEPTS aids operators with proper guidelines so as to shut down safely. The OASYS uses a rule-based expert system and fuzzy logic. The rule-based expert system is used to classify the predefined events and track the emergency operating procedures (EOPs) through data processing, and the fuzzy logic is used to generate the conceptual high-level alarms for the prognostic diagnosis and to evaluate the qualitative fuzzy criteria used in the EOPs. Evaluation results show that the OASYS is capable of diagnosing plant abnormal conditions and providing operators appropriate guidelines with fast response time and consistency. The proposed system is implemented on a SUN-4/75 workstation using C language and Quintus prolog language. Currently, the OASYS is installed in the realtime full scope simulator for validation. After sufficient validation, the OASYS will be installed in the main control room for the unit one nuclear power plant at Young Gwang.