ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
F. Oriolo, W. Ambrosini, G. Fruttuoso, F. Parozzi, R. Fontana
Nuclear Technology | Volume 112 | Number 2 | November 1995 | Pages 238-249
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT95-A35177
Articles are hosted by Taylor and Francis Online.
The evaluation of radionuclide transport within a nuclear reactor plant and then to the external environment after an accident that involves severe damage to the fuel rods requires an appropriate evaluation of the thermal-hydraulic conditions that influence both the chemical equilibria among the involved species and the radionuclide retention phenomena. The ENEL Code for the Analysis of Radionuclide Transport (ECART) computer program has been developed for the purpose of unifying reactor coolant and containment system analysis and represents the current state of the art of light water reactor severe accident aerosol codes. New aerosol transport models, like physical resuspension and transport under two-phase flow within the reactor coolant system, are included. The code comprises three modules that deal with aerosol transport, chemical equilibria, and thermal hydraulics, respectively. The recently developed thermal-hydraulic module has been applied to the analysis of transients typically addressed by the code to obtain first indications about the adequacy of the adopted models and about the need for further improvements. A thorough assessment is now needed to achieve confidence in the modeling capabilities of the module. The three modules are presently coupled in the integrated ECART code. The obtained code will be further assessed by application to relevant severe accident scenarios.