ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
A. I. Miller, D. A. Spagnolo, J. R. DeVore
Nuclear Technology | Volume 112 | Number 2 | November 1995 | Pages 204-213
Technical Paper | Radioisotopes and Isotope | doi.org/10.13182/NT95-A35174
Articles are hosted by Taylor and Francis Online.
Tritium removal and heavy water upgrading are essential components of the heavy water-moderated reactor that is the heart of the Advanced Neutron Source (ANS) to be built at Oak Ridge National Laboratory. The technologies for these two processes, which are closely related, are reviewed in the context of the ANS requirements. The evolution of the design of the Heavy Water Upgrading and Detritiation Facility (HWUDF) for ANS is outlined, and the final conceptual design is presented. The conceptual design of HWUDF has two main component systems: (a) a front-end combined electrolysis and catalytic exchange (CECE) system and (b) a back-end cryogenic distillation (CD) system. The CECE process consists of a countercurrent exchange column for hydrogen-water exchange over a wetproofed catalyst and electrolysis to convert water into hydrogen. It accepts all the tritiated heavy water streams of the reactor and performs an almost total separation into a protium (light hydrogen) stream containing tritium and deuterium at only natural abundance and a deuterium stream containing all the tritium and almost no protium. The tritium-containing deuterium stream is then processed by a CD unit, which removes over 90% of the tritium and concentrates it to >99% tritium for indefinite storage as a metal tritide. Deuterium gas with a small residue of tritium is recombined with oxygen from the electrolytic cells and returned as heavy water to the reactor.