ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
G. Srikantiah
Nuclear Technology | Volume 112 | Number 3 | December 1995 | Pages 373-381
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT95-A35163
Articles are hosted by Taylor and Francis Online.
One of the basic objectives of subchannel flow simulation and analysis effort sponsored by the Electric Power Research Institute was the development of a computer code for subchannel analysis and its verification and validation for applications to reactor thermal margin evaluation under steady and transient conditions. A historical perspective is given of the development of specifications for a reactor core subchannel thermal-hydraulics analysis code for utility applications in the evaluation of reactor safety limits during normal operation and accident scenarios. The subchannel analysis capabilities of the VIPRE-01 code based on the homogeneous equilibrium with the algebraic slip model of two-phase flow are presented. The code, which received a safety evaluation report from the U.S. Nuclear Regulatory Commission in 1986, is in wide use in the utility industry for fuel reload safety analysis, critical heat flux correlation development and testing, thermal margin analysis, and core thermal-hydraulic analysis. A considerable amount of work has been done during the past few years on the development of VIPRE-02, an advanced subchannel analysis code based on the two-fluid model of two-phase flow capable of simulating reactor cores, vessels, and internal structures. The functional specifications, development of VIPRE-02, and current applications for VIPRE-02, such as boiling water reactor mixed fuel core evaluation, are also discussed.