ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
P. Knabe, F. Wehle
Nuclear Technology | Volume 112 | Number 3 | December 1995 | Pages 315-323
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT95-A35157
Articles are hosted by Taylor and Francis Online.
A fuel assembly with a large critical power margin introduces flexibility into reload fuel management. Therefore, optimization of the bundle and spacer geometry to maximize the bundle critical power is an important design objective. With a view to reducing the extent of the complex full-scale tests usually carried out to determine the thermal-hydraulic characteristics of various assembly geometries, the subchannel analysis method was further developed with the Siemens RINGS code. The annular flow code predicts dryout power and dryout location by calculating the conditions at which the liquid film flow rate is reduced to zero, allowing for evaporation, droplet entrainment, and droplet deposition. Appropriate attention is paid to the modeling of spacer effects. Comparison with experimental data of 3 × 3 and 4 × 4 tests shows the capability of RINGS to predict the flow quality and mass flux in subchannels under typical boiling water reactor operating conditions. By using the RINGS code, experimental critical power data for 3 × 3, 4 × 4, 5 × 5, 7 × 7, 8 × 8, 9×9, and 10 × 10 fuel assemblies were successfully postcalculated.