ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Carl A. Beard, John J. Buksa, Michael W. Cappiello, J. Wiley Davidson, Jay S. Elson, John R. Ireland, Robert A. Krakowski, Burt J. Krohn, William C. Sailor, Joseph L. Sapir
Nuclear Technology | Volume 111 | Number 1 | July 1995 | Pages 122-132
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT95-A35151
Articles are hosted by Taylor and Francis Online.
A conceptual target and blanket design for an accelerator transmutation of waste system capable of transmuting the high-level waste stream from 2.5 light water reactors is described. Typically, four such targetblanket designs would be served by a single linear accelerator. The target consists of rows of solid tungsten rod bundles, cooled by heavy water and surrounded by a lead annulus. The annular blanket, which surrounds the target, consists of a set of actinide-oxide-slurrybearing tubes, each 3 m long, surrounded by heavy water moderator. Heat is removed from the slurry tubes by passing the slurry through an external heat exchanger. Long-lived fission products are burned in regions that are separate from the actinides. Using the Monte Carlo codes LAHET and MCNP, a conceptual design for a beam current of 62.5 mA/target of 1.6-GeV protons has been developed. Preliminary engineering analyses on key system components have been performed. A preliminary layout of the concept and the associated primary-heat transport subsystems was developed, demonstrating a multiple-containment-boundary design philosophy.