ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reviewers needed for NRC research proposals
The deadline is fast approaching for submitting an application to become a technical reviewer for the Nuclear Regulatory Commission’s fiscal year 2025 research grant proposals.
David Dziadosz, Timothy N. Ake, Mehmet Saglam, Joe J. Sapyta
Nuclear Technology | Volume 147 | Number 1 | July 2004 | Pages 69-83
Technical Paper | Thoria-Urania NERI | doi.org/10.13182/NT147-69
Articles are hosted by Taylor and Francis Online.
A light water reactor (LWR) fuel assembly design consisting of a blend of weapons-grade plutonium and natural thorium oxides was examined. The design meets current thermal-hydraulic and safety criteria. Such an assembly would have enough reactivity to achieve three cycles of operation. The pin power distribution indicates a fairly level distribution across the assembly, avoiding hot spots near guide tubes, corners, and other sections where excessive power would create significant loss to thermal-hydraulic margins.This work examined a number of physics and core safety analysis parameters that impact the operation and safety of power reactors. Such parameters as moderator coefficients of reactivity, Doppler coefficients, soluble boron worth, control rod worth, prompt neutron lifetime, and delayed-neutron fractions were considered. These in turn were used to examine reactor behavior during a number of operational conditions, transients, and accidents. Such conditions as shutdown from power with one rod stuck out, steam-line break accident, feedwater line break, loss of coolant flow, locked rotor accidents, control rod ejection accidents, and anticipated transients without scram (ATWSs) were examined.The analysis of selected reactor transients demonstrated that it is feasible to license and safely operate a reactor fueled with plutonium-thorium blended fuel. In most cases analyzed, the thorium mixture had less-severe consequences than those for a core comprising low-enriched uranium fuel. In the analyzed cases where the consequences were more severe, they were still within acceptable limits. The ATWS accident condition requires more analysis.