ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Luder Tibkin, Mahmoud El-Beshbeeshy, Riccardo Bonazza, Michael L. Corradini
Nuclear Technology | Volume 111 | Number 1 | July 1995 | Pages 92-104
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT95-A35147
Articles are hosted by Taylor and Francis Online.
Detonation wave theory was applied to the physical process of a vapor explosion. Initially, our experimental observations using hot water as the fuel and saturated refrigerant liquid as the coolant were analyzed with this technique. These tests are notable since peak explosion pressures were far below the critical pressure of the coolant. From the analysis, the volume fractions of the coolant vapor and the volume ratio of the two liquids prior to the explosion were estimated from the measured peak explosion pressures and associated explosion propagation velocities under the assumption that the process was steady and one-dimensional. Complete Hugoniot curves were constructed, and the detonation condition was initially determined under the assumption that flow velocity behind the shock was equal to the mixture sound speed. This assumption was checked with the tangency condition between the Rayleigh line and Hugoniot curve at the Chapman-Jouguet point, as well as the existence of a minimum in the entropy change across the shock wave. The point of minimum entropy showed good agreement with the graphical tangency point, but was slightly different than the sound speed criteria in pressure (<2%) with a larger difference in propagation speed (50%). This discrepancy between the three criteria becomes insignificant as the explosion pressure rises. This is demonstrated by examining a tin-water explosion experiment. This technique appears to be a useful tool to estimate initial conditions for subcritical vapor explosions.