ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Luder Tibkin, Mahmoud El-Beshbeeshy, Riccardo Bonazza, Michael L. Corradini
Nuclear Technology | Volume 111 | Number 1 | July 1995 | Pages 92-104
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT95-A35147
Articles are hosted by Taylor and Francis Online.
Detonation wave theory was applied to the physical process of a vapor explosion. Initially, our experimental observations using hot water as the fuel and saturated refrigerant liquid as the coolant were analyzed with this technique. These tests are notable since peak explosion pressures were far below the critical pressure of the coolant. From the analysis, the volume fractions of the coolant vapor and the volume ratio of the two liquids prior to the explosion were estimated from the measured peak explosion pressures and associated explosion propagation velocities under the assumption that the process was steady and one-dimensional. Complete Hugoniot curves were constructed, and the detonation condition was initially determined under the assumption that flow velocity behind the shock was equal to the mixture sound speed. This assumption was checked with the tangency condition between the Rayleigh line and Hugoniot curve at the Chapman-Jouguet point, as well as the existence of a minimum in the entropy change across the shock wave. The point of minimum entropy showed good agreement with the graphical tangency point, but was slightly different than the sound speed criteria in pressure (<2%) with a larger difference in propagation speed (50%). This discrepancy between the three criteria becomes insignificant as the explosion pressure rises. This is demonstrated by examining a tin-water explosion experiment. This technique appears to be a useful tool to estimate initial conditions for subcritical vapor explosions.