ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
M. T. Pauken, M. F. Dowling, B. K. Kamboj, S. M. Jeter, S. I. Abdel-Khalik
Nuclear Technology | Volume 111 | Number 1 | July 1995 | Pages 80-91
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT95-A35146
Articles are hosted by Taylor and Francis Online.
Spent-fuel storage and disassembly basins at heavy water reactor facilities have maximum allowable temperature and tritium activity levels to protect personnel from exposure to radiation from the tritiated water vapor emanating from these basins. Means of reducing this exposure by suppressing basin water evaporation through the use of monolayer films are presented. The effect of tritiated water on the performance of the monolayer film has been experimentally examined, and tritiated water does not detrimentally affect the film’s ability to reduce evaporation. Large-scale light water experiments have demonstrated that an octadecanol monolayer can reduce evaporation by ∼50%. A method for applying and maintaining a monolayer film over large areas with complex surface geometries has been developed. The results demonstrate the feasibility of using octadecanol monolayers to suppress evaporation from tritiated water pools.