ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
G. Gündüz, İ. Uslu, I. Önal, H. H. Durmazuçar, T. Öztürk, A. A. Akşit, B. Kopuz, F. Can, Ş. Can, R. Uzmen
Nuclear Technology | Volume 111 | Number 1 | July 1995 | Pages 63-69
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT95-A35144
Articles are hosted by Taylor and Francis Online.
Uranium dioxide-gadolinium oxide fuel was produced by the sol-gel technique. The effects of different parameters such as calcination and reduction temperature, compaction pressure, particle size of powder, type of binder, sintering temperature, sintering atmosphere, and duration of sintering on pore size distribution were investigated. The experiments were carried out on three different fuels, (a) pure urania, (b) uraniagadolinia (10%), and (c) urania-gadolinia (10%)-titania (0.1%) doped fuel. It was observed that compaction pressure as low as 200 MPa is sufficient to obtain highdensity pellets, while the use of binder or grinding the powder below 400 mesh does not affect densities. Reduction of powder at 1000 K always gives lower density fuels than the powder reduced at 873 K. Sintering at high temperature and the use of a wet atmosphere each independently increases the fuel density.