ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Jie Lin, Yair Bartal, Robert E. Uhrig
Nuclear Technology | Volume 111 | Number 1 | July 1995 | Pages 46-62
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT95-A35143
Articles are hosted by Taylor and Francis Online.
The importance of automatic diagnostic systems for nuclear power plants (NPPs) has been discussed in numerous studies, and various such systems have been proposed. None of those systems were designed to predict the severity of the diagnosed scenario. A classification and severity prediction system for NPP transients is developed. The system is based on nearest neighbors modeling, which is optimized using genetic algorithms. The optimization process is used to determine the most important variables for each of the transient types analyzed. An enhanced version of the genetic algorithms is used in which a local downhill search is performed to further increase the accuracy achieved. The genetic algorithms search was implemented on a massively parallel supercomputer, the KSR1-64, to perform the analysis in a reasonable time. The data for this study were supplied by the highfidelity simulator of the San Onofre unit 1 pressurized water reactor.