ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Kazuo Minato, Hironobu Kikuchi, Kousaku Fukuda, Nobuyuki Suzuki, Hiroshi Tomimoto, Nobu Kitamura, Mitsunobu Kaneko
Nuclear Technology | Volume 111 | Number 2 | August 1995 | Pages 260-269
Technical Paper | Nuclear Criticality Safety Special / Nuclear Fuel Cycle | doi.org/10.13182/NT95-A35135
Articles are hosted by Taylor and Francis Online.
To reduce the defective coating fraction of TRISO-coated UO2 particles, failure mechanisms of fuel particle coating during the coating processes have been studied. Examinations of the coated fuel particles at every coating stage revealed two kinds of silicon carbide (SiC)-defective particles. The SiC-defective particles with partly carbonized kernels were formed by chemical reactions during SiC deposition when the coating layer of inner dense pyrolytic carbon was defective. The SiC-defective particles with nonreacted kernels were formed by mechanical shocks during unloading of SiC-coated particles from the coater. The coating processes were improved by controlling particle fluidization modes in the coater and by adopting a coating process without unloading and loading of the particles at intermediate coating stages.