ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Kazuo Minato, Hironobu Kikuchi, Kousaku Fukuda, Nobuyuki Suzuki, Hiroshi Tomimoto, Nobu Kitamura, Mitsunobu Kaneko
Nuclear Technology | Volume 111 | Number 2 | August 1995 | Pages 260-269
Technical Paper | Nuclear Criticality Safety Special / Nuclear Fuel Cycle | doi.org/10.13182/NT95-A35135
Articles are hosted by Taylor and Francis Online.
To reduce the defective coating fraction of TRISO-coated UO2 particles, failure mechanisms of fuel particle coating during the coating processes have been studied. Examinations of the coated fuel particles at every coating stage revealed two kinds of silicon carbide (SiC)-defective particles. The SiC-defective particles with partly carbonized kernels were formed by chemical reactions during SiC deposition when the coating layer of inner dense pyrolytic carbon was defective. The SiC-defective particles with nonreacted kernels were formed by mechanical shocks during unloading of SiC-coated particles from the coater. The coating processes were improved by controlling particle fluidization modes in the coater and by adopting a coating process without unloading and loading of the particles at intermediate coating stages.