ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Chris F. Haught, W. C. Jordan, B. Basoglu, R. W. Brewer, A. D. Wilkinson, H. L. Dodds
Nuclear Technology | Volume 111 | Number 2 | August 1995 | Pages 197-218
Technical Paper | Nuclear Criticality Safety Special / Nuclear Criticality Safety | doi.org/10.13182/NT95-A35130
Articles are hosted by Taylor and Francis Online.
A theoretical model is used to predict the consequences of a postulated hypothetical nuclear criticality excursion in a freezer/sublimer (F/S). Previous work has shown that an intrusion of water into a F/S may result in a critical configuration. A first attempt is made to model the neutronic and thermal-hydraulic phenomena occurring during a criticality excursion involving both uranium hexafluoride (UF6) and uranyl fluoride (UO2F2) solution, which is present in the F/S during upset conditions. The model employs point neutronics coupled with simple thermal hydraulics. Reactivity feedback from changes in the properties of the system are included in the model. The excursion is studied in a 10-MW F/S with an initial load of 3500 kg of 5% weight enriched UF6 and in a 20-MW F/S with an initial load of 6800 kg of 2% weight enriched UF6. The magnitude of the fission release determined in this work is 5.93 × 1018 fissions in the 10-MW F/S and 4.21 × 1018 fissions in the 20-MW F/S. In order to demonstrate the reliability of the techniques used in this work, a limited validation study was conducted by comparing the fission release and peak fission rate determined by this work with experimental results for a limited number of experiments. The agreement between calculations and experiments in the validation study is considered to be satisfactory. The calculational results for the hypothetical accidents in the two F/S vessels appear reasonable.