ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Shunsuke Uchida, Eishi Ibe, Kiyatomo Nakata, Motomasa Fuse, Katsumi Ohsumi, Yoshie Takashima
Nuclear Technology | Volume 110 | Number 2 | May 1995 | Pages 250-257
Technical Paper | Material | doi.org/10.13182/NT95-A35122
Articles are hosted by Taylor and Francis Online.
Many efforts to preserve the structural integrity of major piping, components, and structures in a boiling water reactor (BWR) primary cooling system have been directed toward avoiding intergranular stress corrosion cracking (IGSCC). Application of hydrogen water chemistry (HWC) to moderate corrosive circumstances is a promising approach to preserve the structural integrity during extended lifetimes of BWRs. The benefits of HWC application are (a) avoiding the occurrence of IGSCC on structural materials around the bottom of the reactor pressure vessel (RPV) and (b) moderating the crack growth rate, even if microcracks are present on the structural materials. Several disadvantages caused by HWC (e.g., turbine dose rate increase, 60Co radioactivity buildup, and effects on fuel cladding) are evaluated to develop suitable countermeasures prior to HWC application. The advantages and disadvantages of HWC are quantitatively evaluated based on both BWR plant data and laboratory data shown in unclassified publications. Their trade-offs are discussed, and suitable applications of HWC are described. It is concluded that an optimal amount of hydrogen injected into the feedwater can moderate corrosive circumstances, in the region to be preserved, without serious disadvantages. The conclusions have been drawn by combining experimental and theoretical results. Experiments in BWR plants—e.g., direct measurements of electrochemical corrosion potential and crack growth rate at the RPV bottom — are planned that would collect data to support the theoretical considerations.