ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Iain M. Shepherd, Yannis Drossinos, Christopher G. Benson
Nuclear Technology | Volume 110 | Number 2 | May 1995 | Pages 181-197
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT95-A35117
Articles are hosted by Taylor and Francis Online.
An extensive database of aerosol experiments exists and has been used for checking aerosol transport codes. Data for fission product vapor transport are harder to find. Some qualitative data are available, but the Falcon thermal gradient tube tests carried out at AEA Technology’s laboratories in Winfrith, England, mark the first serious attempt to provide a set of experiments suitable for the validation of codes that predict the transport and condensation of realistic mixtures of fission product vapors. Four of these have been analyzed to check how well the computer code VICTORIA can predict the most important phenomena. Of the four experiments studied, two are reference cases (FAL-17 and FAL-19), one is a case without boric acid (FAL-18), and the other is run in a reducing atmosphere (FAL-20). The results show that once the vapors condense onto aerosols, VICTORIA can predict their deposition rather well. The dominant mechanism is thermophoresis, and each element deposits with more or less the same deposition velocity. VICTORIA assumes that the physical properties of the aerosol are independent of its composition and that each particle has the same composition. This assumption is justified for these experiments.