An extensive database of aerosol experiments exists and has been used for checking aerosol transport codes. Data for fission product vapor transport are harder to find. Some qualitative data are available, but the Falcon thermal gradient tube tests carried out at AEA Technology’s laboratories in Winfrith, England, mark the first serious attempt to provide a set of experiments suitable for the validation of codes that predict the transport and condensation of realistic mixtures of fission product vapors. Four of these have been analyzed to check how well the computer code VICTORIA can predict the most important phenomena. Of the four experiments studied, two are reference cases (FAL-17 and FAL-19), one is a case without boric acid (FAL-18), and the other is run in a reducing atmosphere (FAL-20). The results show that once the vapors condense onto aerosols, VICTORIA can predict their deposition rather well. The dominant mechanism is thermophoresis, and each element deposits with more or less the same deposition velocity. VICTORIA assumes that the physical properties of the aerosol are independent of its composition and that each particle has the same composition. This assumption is justified for these experiments.