ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Takashi Hibiki, Kaichiro Mishima, Masahito Matsubayashi
Nuclear Technology | Volume 110 | Number 3 | June 1995 | Pages 422-435
Technical Paper | Actinide Burning and Transmutation Special / Radiation Application | doi.org/10.13182/NT95-A35111
Articles are hosted by Taylor and Francis Online.
To apply the neutron radiography (NRG) technique to fluid research, high-frame-rate NRG with a steady thermal neutron beam was developed by gathering up-to-date technologies for neutron sources, scintillators, high-speed videos, and image intensifiers. This imaging system has many advantages such as a long recording time, high-frame-rate (up to 1000 frame/s) imaging, and no need for a triggering signal. Visualization of air-water two-phase flow in a metallic rectangular duct was achieved at the recording speeds of 250, 500, and 1000 frame/s. The qualities of those consecutive images were good enough to observe the flow mechanism and to measure the flow characteristics. It was demonstrated that some characteristics of two-phase flow could be measured by using the current imaging system. To quantify geometric information from NRG images, measurements of flow regime, rising velocity of bubbles and wave height, interfacial length, and interfacial area in annular flow were performed by using the image processing technique. To quantify attenuation characteristics of neutrons in materials, measurements of average void fraction and void profile were conducted. It was confirmed that this new technique may have significant advantages in both visualizing and measuring high-speed fluid phenomena when the ordinary methods such as the optical method and X-ray radiography cannot be applied.