ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Tadafumi Koyama, Reiko Fujita, Masatoshi Hzuka, Yukio Sumida
Nuclear Technology | Volume 110 | Number 3 | June 1995 | Pages 357-368
Technical Paper | Actinide Burning and Transmutation Special / Enrichment and Reprocessing System | doi.org/10.13182/NT95-A35107
Articles are hosted by Taylor and Francis Online.
A new electrorefiner with a ceramic partition has been developed for pyrometallurgical reprocessing of metallic fuel. In this electrorefiner, dissolution of spent fuel and deposition take place simultaneously, resulting in an increase of the processing rate. The feasibility of this electrorefiner was confirmed by a polarization profile and a current efficiency of an electrotransportation of uranium from a pure uranium anode to an iron cathode through a liquid cadmium pool. Separation of active fission products from actinide was confirmed by a transportation of simulating fission product elements with and without imposing electropotential. The maximum cathode current density onto a liquid cadmium pool without formation of a dendrite was measured against the concentration, and it was found to decrease with increasing concentration of uranium in cadmium. The estimated time required to process 50 kg of heavy metal by the new electrorefiner was less than that of the original electrorefiner.