ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Tadafumi Koyama, Reiko Fujita, Masatoshi Hzuka, Yukio Sumida
Nuclear Technology | Volume 110 | Number 3 | June 1995 | Pages 357-368
Technical Paper | Actinide Burning and Transmutation Special / Enrichment and Reprocessing System | doi.org/10.13182/NT95-A35107
Articles are hosted by Taylor and Francis Online.
A new electrorefiner with a ceramic partition has been developed for pyrometallurgical reprocessing of metallic fuel. In this electrorefiner, dissolution of spent fuel and deposition take place simultaneously, resulting in an increase of the processing rate. The feasibility of this electrorefiner was confirmed by a polarization profile and a current efficiency of an electrotransportation of uranium from a pure uranium anode to an iron cathode through a liquid cadmium pool. Separation of active fission products from actinide was confirmed by a transportation of simulating fission product elements with and without imposing electropotential. The maximum cathode current density onto a liquid cadmium pool without formation of a dendrite was measured against the concentration, and it was found to decrease with increasing concentration of uranium in cadmium. The estimated time required to process 50 kg of heavy metal by the new electrorefiner was less than that of the original electrorefiner.