ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Carl A. Beard, J. Wiley Davidson, Robert A. Krakowski, Morris E. Battat
Nuclear Technology | Volume 110 | Number 3 | June 1995 | Pages 321-356
Technical Paper | Actinide Burning and Transmutation Special / Nuclear Fuel Cycles | doi.org/10.13182/NT95-A35106
Articles are hosted by Taylor and Francis Online.
Transmutation of long-lived nuclear waste (trans-uranic actinides and long-lived fission products) currently stored in spent reactor fuels may represent an attractive alternative to deep geologic disposal. The aqueous-based accelerator transmutation of waste (ATW) concept as proposed by Los Alamos National Laboratory uses a proton accelerator to produce a 1.6-GeV, 250-mA (∼400 MW) beam that is split four ways and directed to four D2O-cooled solid tungsten-lead composite targets. Each target in turn is centered in a heavy water moderated, highly multiplying, actinide (oxide)-slurry blanket. High thermal-neutron fluxes are produced that allow high transmutation reaction rates at low material (actinide, long-lived fission product) inventories. The target-blanket system for ATW resides at an interface separating two major systems that are crucial to the economic and technical success of the concept: (a) the high-energy (power-intensive) accelerator delivering 0.8 to 1.6 GeV protons to the high-Z spallation neutron source and (b) the chemical-plant equipment (CPE) that provides feedstock appropriate for efficient and effective transmutation. Parametric studies have been performed to assess the effects of the target-blanket on overall system performance with regard to neutron economy, chemical-processing efficiency, and thermal-hydraulic design options. Based on these parametric evaluations, an interim base-case aqueous-slurry ATW design was selected for more detailed analyses. This base-case target-blanket consists of an array of Zr-Nb pressure tubes placed in a heavy water moderator surrounding a heavy-water-cooled tungsten-lead target. Neutronics and thermal-hydraulic calculations focusing primarily on the blanket indicate that each of the four ATW target-blanket modules operating with a neutron multiplication keff = 0.95 can transmute the actinide waste and the technetium and iodine waste from ∼ 2.5 light water reactors (LWRs). In addition, by recovering and converting the fission heat, sufficient electricity can be produced both to operate the accelerator and to supply power to the grid for revenue generation; the full (400-MW beam) system would service ∼ 10 LWRs, which at 835 MW(thermal)/ LWR (1363 mol/yr actinide), a thermal-to-electric conversion efficiency of 0.30, and an overall “wall-plug” accelerator efficiency of 0.50 would allow about two-thirds of the 2500-MW(electric) (gross) power to be delivered to the grid. The neutronics-, thermal-hydraulics-, and accelerator-CPE-interface consideration, needed to ensure this performance, is examined for the aqueous-slurry ATW. These broad-based parametric studies have provided guidance to a preliminary conceptual engineering design of the aqueous-slurry ATW blanket concept.