A parametric systems model of the accelerator transmutation of (nuclear) waste (ATW) is used to examine key system trade-offs and design drivers on the basis of unit costs. This model is applied primarily to a fluid-fuel blanket concept for an ATW that generates net electric power from the fissioning of spent commercial reactor fuel. An important goal of this study is the development of essential parametric trade-offs to aid in any future conceptual engineering design of an ATW that would burn spent commercial fuel and generate net electric power. As such, costing procedures and methodologies used to estimate and compare advanced nuclear power generation systems are applied. Hence, the cost of electricity (COE) (in mills per kilowatt-hour) is adopted as the primary object function with which to examine parametrically key system trade-offs; other costs, such as unit cost of installed (net) power [in dollars per watt(electric)], total cost (in dollars), total lifecycle cost (in dollars), and cost of product (in dollars per kilogram) are also reported. The COE required by an electrical power-generating ATW fueled with spent commercial fuel is generally found to be above that projected for other advanced fission power plants. The accelerator and the chemical plant equipment cost accounts are quantitatively identified as main cost drivers, with the capital cost of radio-frequency power dominating the former. Significant reductions of this cost differential are possible by increased blanket neutron multiplication, increased plant capacity, or increased thermal-to-electric conversion efficiency. The benefits of reduced long-lived fission products and spent commercial fuel actinides provided by the ATW approach translate into a less tangible source of revenue to be provided by a charge that must be levied on the client fission power plants being serviced. The main goal of this study, however, is not a direct cost comparison but is instead a quantitative determination of cost-based sensitivity of key cost drivers and operational modes for an ATW concept that would address the growing spent commercial fuel problem; parametric results presented focus on this goal, and a specific ATW “straw man” is given to achieve this main objective.