ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Robert A. Krakowski
Nuclear Technology | Volume 110 | Number 3 | June 1995 | Pages 295-320
Technical Paper | Actinide Burning and Transmutation Special / Nuclear Fuel Cycle | doi.org/10.13182/NT95-A35105
Articles are hosted by Taylor and Francis Online.
A parametric systems model of the accelerator transmutation of (nuclear) waste (ATW) is used to examine key system trade-offs and design drivers on the basis of unit costs. This model is applied primarily to a fluid-fuel blanket concept for an ATW that generates net electric power from the fissioning of spent commercial reactor fuel. An important goal of this study is the development of essential parametric trade-offs to aid in any future conceptual engineering design of an ATW that would burn spent commercial fuel and generate net electric power. As such, costing procedures and methodologies used to estimate and compare advanced nuclear power generation systems are applied. Hence, the cost of electricity (COE) (in mills per kilowatt-hour) is adopted as the primary object function with which to examine parametrically key system trade-offs; other costs, such as unit cost of installed (net) power [in dollars per watt(electric)], total cost (in dollars), total lifecycle cost (in dollars), and cost of product (in dollars per kilogram) are also reported. The COE required by an electrical power-generating ATW fueled with spent commercial fuel is generally found to be above that projected for other advanced fission power plants. The accelerator and the chemical plant equipment cost accounts are quantitatively identified as main cost drivers, with the capital cost of radio-frequency power dominating the former. Significant reductions of this cost differential are possible by increased blanket neutron multiplication, increased plant capacity, or increased thermal-to-electric conversion efficiency. The benefits of reduced long-lived fission products and spent commercial fuel actinides provided by the ATW approach translate into a less tangible source of revenue to be provided by a charge that must be levied on the client fission power plants being serviced. The main goal of this study, however, is not a direct cost comparison but is instead a quantitative determination of cost-based sensitivity of key cost drivers and operational modes for an ATW concept that would address the growing spent commercial fuel problem; parametric results presented focus on this goal, and a specific ATW “straw man” is given to achieve this main objective.