ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
James A. Turso, Robert M. Edwards, Jose March-Leuba
Nuclear Technology | Volume 110 | Number 1 | April 1995 | Pages 132-144
Nuclear Reactor Safety | Burnup Credit | doi.org/10.13182/NT95-A35102
Articles are hosted by Taylor and Francis Online.
A “hybrid” reactor /simulation (HRS) testing arrangement has been developed and experimentally verified using The Pennsylvania State University (Penn State) TRIGA Reactor. The HRS uses actual plant components to supply key parameters to a digital simulation (and vice versa). To implement the HRS on the Penn State TRIGA reactor, an experimental or secondary control rod drive mechanism is used to introduce reactivity feedback effects that are characteristic of a boiling water reactor (BWR). The simulation portion of the HRS provides a means for introducing reactivity feedback caused by voiding via a reduced order thermal-hydraulic model. With the model bifurcation parameter set to the critical value, the nonlinearity caused by the neutronic-simulated thermal/hydraulic coupling of the hybrid system is evident upon attaining a limit cycle, thereby verifying that these effects are indeed present. The shape and frequency of oscillation (∼0.4 Hz) of the limit cycles obtained with the HRS are similar to those observed in operating commercial BWRs. A control or diagnostic system specifically designed to accommodate (or detect) this type of anomaly can be experimentally verified using the research reactor based HRS.