ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Chien Chung, Cheng-Chang Chan
Nuclear Technology | Volume 110 | Number 1 | April 1995 | Pages 106-114
Fission Reactor | Burnup Credit | doi.org/10.13182/NT95-A35100
Articles are hosted by Taylor and Francis Online.
Radioactive 16N and 19O in the Tsing Hua Open-Pool Reactor, produced from 16O(n,p)16N and 18O(n,γ)19O reactions, respectively, have been measured using a rapid sampling device and gamma-ray spectroscopic systems. The radioactivity of the 7-s half-life 16N and 27-s half-life 19O in the pool water are monitored in the power range from 1 W to 1 MW. The three-dimensional concentration of these radionuclides in the water coolant is also contour mapped down to the detection limit of 10 Bq/ℓ. The spatial distribution of the short-lived radionuclides in the reactor pool, resulting from both the neutron flux distribution and heat transfer characteristics external to the core, is discussed for reactor operation at various power levels.