ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Joé M. Conde, Manuel Recio
Nuclear Technology | Volume 110 | Number 1 | April 1995 | Pages 22-32
Technical Paper | Burnup Credit / Nuclear Criticality Safety | doi.org/10.13182/NT95-A35093
Articles are hosted by Taylor and Francis Online.
Several Spanish light water reactor commercial nuclear power plants are close to maximum spent-fuel pool storage capacity. The utilities are working on the implementation of state-of-the-art methods to increase the storage capacity, including both changes in the pool design (reracking) and the implementation of new analysis approaches with reduced conservatism (burnup credit). Burnup credit criticality safety analyses have been approved for two pressurized water reactor plants (four units) and one boiling water reactor (BWR); another BWR storage analysis is being developed at this moment. The elimination of the “fresh fuel assumption” increases the complexity of the criticality analysis to be performed, sometimes putting into question the capability of the analytic tools to properly describe this new situation and increasing the scope of the scenarios to be analyzed. From a regulatory perspective, the reactivity reduction associated with burnup of the fuel can be given credit only if the exposure of each fuel bundle can be known with enough accuracy. Subcriticality of spent-fuel storage depends mainly on the initial fuel enrichment, storage geometry, fuel exposure history, and cooling time. The last two aspects introduce new uncertainties in the criticality analysis that should be quantified in an adequate way. In addition, each and every fuel bundle has its own specific exposure history, so that strong assumptions and simplified calculational schemes have to be developed to undertake the analysis. The Consejo de Seguridad Nuclear (CSN), Spanish regulatory authority on the matter of nuclear safety and radiation protection, plays an active role in the development of analysis methods to support burnup credit, making proposals that may be beneficial in terms of risk and cost while keeping the widest safety margins possible.